
PMM U.S.S.R., Vo1.47,No.l,pp.51-SE,1984 
Printed in Great Britain 

0021~8928/84 $lo.OO+o.OO 
01984 Pergamon Press Ltd. 

UDC 532.72 

ON STATIONARY CONDITIONS OF WORK OF CHEMICAL REACTORS 

WITH LONGITUDINAL AND TRANSVERSE NIXING* 

1u.P. GUPALO and V.M. OSTRIK 

A two-dimensional model of chemical reactor is proposed and investigated. The model 
generalizes the model of ideal displacement with integral allowance for heat emis- 
sion /1/ on the case when in the reactor the radial temperature gradient is substan- 
tial. For the proposed model the existence of at least one stationary solution is 
proved for any parameters of the system. The sufficient criteria are determined for 
the existence of a stationary mode in the region of parameter variation in which 
this mode is unique. Comparison with the respective mode /l/ show that outside the 
neighborhood of the boundary of regions of parameters with various numbers of modes, 
the stationary solutions for the proposed model are a regular perturbations of solu- 
tions /l/. in asymptotic expansion of solutions is constructed for small P&let 
numbers and an approximate solution is given for moderate P&let numbers, based on 
a quadratic approximation of the radial temperature profile is given. Obtained re- 
sults are supported by numerical calculations, which use the finite-difference ap- 
proximation of initial differential equations and the methods of ranging /2/orlocal 
variation /3/ for solving the two-point respective boundary value problem. 

For the described processes of heat and mass transfer in a flowing chemical reactor and 
reactors with suspended layer generally are used one-dimensional models supplemented by simpli- 
fying assumptions about the transport processes (perfect displacement or total intermixing). 
The existence, uniqueness, and the stability of steady modes of such reactors was the subject 
of fairly large attention /4-b/. However,for a number of heterogeneous catalytic processes 
that occur with considerable heat release, the transverse temperature gradient becomes import- 
ant, necessitating the introduction in the consideration the mechanism of transverse thermal 
conductivity and heat transfer on the wall to the heat carrier. 

The domain of application of the proposed here two-dimensional model may be the descrip- 
tion of high egzothermal processes in fluidized beds, where the reagents motion is close to 
the mode of ideal displacement, and the values of effective thermal conductivity coefficients 
are large owing to the intensive motion of the catalyst particles. This model may also be 
used for the analysis the conditions of reactor operation with a stationary layer of the 
catalyst, in which the value of the effective thermal conductivity coefficient in the trans- 
verse direction is considerably lower than in the longitudinal /7,8/. 

1. The reactor model. The two-dimensional model of chemical reactor of ideal dis- 
placement with respect to the matter (the longitudinal and transverse diffusion coefficients 
are zero) and complete longitudinal intermixing with respect to energy (the longitudinal 
thermal conductivity coefficient is infinite, while the transverse is finite). For simplicity 
it is assumed that the velocity profile is plane and the chemical reaction is of first order, 
although the basic conclusions are valid for reactions of any order. 

The stationary equations of mass and heat transfer for the considered model of reactor 
are in the dimensionless form as follows: 

-$-gexp(-$)(I-_)=0 

~~(,~)=P,~e-e"-p~~p(--)S~I--E)dz] 
" 
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-jr’ 5=T, T==T 

where c and co is the concentration of the key substance in the reactor and at entry intothe 
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latter, respectively, T ad T” are the temperatures respectively of the reactor and the temp- 
erature of the entering mixture, h is the heat of reaction, p and c are the density and the 
specific heat of the mixture of reagents and the product of reaction,Eis the activationenergy, 
R, is the gas constant, k,is the Arrenhius preexponent, u is the mixture velocity, 1 and a 
are the length and radius of the reactor, X and Rare the longitudinal (O,< X < 1) and trans- 
verse (0 <R Q a) coordinates, 8, is the volume part of the mixture of reagents andof product 
of reaction in the porous layer of catalyst, h is effective value of the coefficient of the 
thermal conductivity in the radial direction, and gis a parameter proportional to the 
Damkeller number. 

Equations (1.1) and (1.2) are supplemented by the boundary conditions 

5=0, E=O 
r = 0, d6/dr = 0 

r = 1, dWdr + Bi(0 - 0') = 0 

fY=-&-, Bi=vPe, 
al 

v-- 
eoQcllu 

(1.3) 

(1.4) 

where Bi is the Biot number, T’ is the temperature of the heat carrier, and a, is the coef- 
ficient of heat transfer by the heat carrier through the wall. 

Since the effective coefficients of transfer for the substance and heat in the considered 
here model of reactor substantially differ , it is interesting to estimate the characteristic 
dimensions of the reactor, for which such model is acceptable. The characteristic time of 
diffusion processes transfer of the substance in= min(o*/D,,fl/D,) (where D,,D, are the effect- 
ive coefficients of diffusion in the transverse and longitudinal directions, respectively) 
significantly greater than the time of its transfer by the stream along the reactor TV= VU. 
The characteristic time of transmission of heat by thermal conductivity in the longitudinal 
direction r= PI& is, on the contrary, by far smaller of time r,,, and the characteristic time 
of transfer of heat in the transverse direction r, =aVxr is comparable with r, (here xr,xr are 
the effective coefficients if thermal conductivityinthe longitudinal and transverse direc- 
tions, respectively; x=&&c)). Than the reactor dimensions must satisfy the following require- 
ments: 

h/u > I> Dzh G/u > a > W&J 

The stationary distribution of the degree of reaction advancement is determined by the 
solution of Eq.(l.l) with the boundary condition (1.3) and is connected to the temperature 
radial distribution by the relation 

E (t, r) = 1 - exp (-.rg exp (-B/9 (r))) (1.5) 

Substituting (1.5) into (1.2), we obtain for the determination' of stationary distribution 
of temperature along the reactor radius the equation 

-s-a+ =PeF(B); F(0)=6- W-1 +exp(-gexp(-+)) (1.6) 

The number of solutions of the two-point boundary value problem (l-6), (1.4) determines 
the number of stationary modes of reactor operation. By virtue of nonlinearity of function 
F(8) there can be several stationary modes. 

2. On the existence of solution. The two-point boundary value problem (1.4), (1.6) 
has at point r = 0 a nonsuuraable singularity. But by virtue of boundedness of function F(8) 
it is possible to solve the problem of its existence. In this case it is possible to take 

advantage of the theorem /9/ in conformity with which the solution of two-point boundary value 
problem with a nonsunnnable singularity does exist, if there exist an upper (a'(r)) and a lower 

(a(r)) functions of the problem that satisfy specific conditions and a' (r) > a (r). The solution 

lies between the upper and lower functions 

a (r) < 0 (r) < a' (r) (2.1) 

Such functions for problem (l-4), (1.6) can be constructed 

a' (r) = 6" + 1 + Z (Pe)(W - 0" - 1)Z, (rl@i) 

a (r) = 8” + Z (Pe) (9' - 0") I, (rfi) 

(2.2) 

Z (Pe) = BiIZ,(fl)m + BiZ, (fi)l-‘> 0 

where Z,, and I1 are modified Bessel functions of zero and first order. 
It can be shown that the estimate (2.11, (2.2) remains valid for all solutionsofproblem 
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(1.4), (1.6), when there are several of them. Condition (2.1) in the limit case Pe = 0 (heat 

propagates along the radius considerable quicker than it is carried away by the stream along 
the reactor) reduces to the following: 

Pe(1+8")+2BiW 
Pe+2Bi 

and in the opposite case (Pe-+oo) 

8” + (El’ - e”) exp (- m(1 - r))/fi< 8 (r) < 

8" + 1 + (et - 8” - 1) exp (- 1/K(1 - r))/fi 

3. Sufficient conditions of uniqueness. For simpler models considered earlierthe 
possibility of existence of several stationary modes of chemical reactors operation was demon- 
strated. It is therefore expected that in the considered here case the solution will be gener- 
ally nonunique. 

For the determination of the sufficient condition of uniqueness of solution of problem 
(1.41, (1.6) we consider the difference of two solutions AO(r)= e,(r) -Cl,(r) that satisfythe 
equations 

f$(ri$j= Pe IF w - F v&)1 (3.1) 

r = 0, de/& = 0; r = 1, deldr + Bi(6 - 6') = 0 

Using theGreen's function 

G (r, t; Bi)= 
1/Bi-In(r), t<r 

1/Bi- In(t), t> r 

problem (3.1) reduces to the integral equation 

be= - Pei G(r, t; Bi)[F(&)- F(e,)] tdt 
0 

(3.2) 

Gwing to the boundedness of function F(0) it satisfies the Lipschitz condition with con- 
stant M 

1 M < 1 + g*/fi, g* = (In g + 2/h g)Ve (3.3) 

Then from (3.2) we have 

It follows from here that solution is unique (A6 =O), if 

Pe($ + &)M<l (3.4) 

With increasing P&let number the region in which the solution is necessarily unique, nar- 
rows. One more criterion of uniqueness can be established, which provides a weaker estimate 
of the region of uniqueness at high P&let numbers. For this we separate in the right-hand 
side of Eq.Cl.6) the component proportional to A8 and write problem (3.1) in the form 

1 d dA0 
-TX rdr ( ) - Pe A0 = Pe 1~ (e,) - cp (e,)j 

c~(e)=exp(--gexp(- p)) 

(3.5) 

r = 0, dAe/dr = 0; r =I, dAe/dr + BiAe = 0 

For this problem the sufficient condition of uniqueness, similar to (3.4), is 

Pem;xlS G* (r, t; Bi) 1 dt 1 m < 1 
” 

where m is the Lipschitz constant m(e)(m= M- 
(3.5). 

l), and G*is the Green's function of problem 
From the definition of Green's function follows 
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The solution of problem (3.5) with right-hand side Pe(cp,- 9%) = -Iis known 

(function I (Pe) was determined earlier in (2.2) ). We then have 

maxISG*(r,!;Bi)tdt/=~[i--I(l'e)i F 0 

and the sufficient condition of uniqueness of (3.6) assumes the form 

[I -I (Pe)l m < 1 (3.7) 

Note that condition (3.7) is a generalization of Van Hirden /6/ for the problem consider- 
ed here. In the limit case Pe+O (reactor of total intermixing withrespecttotemperature) 
it reduces to 

m< 2 + 2v, Y = Bi/Pe (3.81 

and has the simple physical meaning: the maximum slope of heat release curve is smaller slope 
than that of heat transfer curve. 

A weaker but simpler criterion of uniqueness can be obtained from (3.71, using the upper 
limit of Lips&its's constant m. According to 13.3) tn = bf - 1 <g*/@. Then (3.7) is reduced 
tothe condition 

fi > g" !1 - I jPe)l (3.9) 

and in the limit case of Pe-+O assumes a particularly simple form 

B (1 -I- 2v) > g* (3.101 

Note that one more, the weaker, but uniform over Pe condition of uniqueness 1s implied by 
(3.9), if one takes into account that I(Pe) is always greater than zero 

B>g* (3,111 

Conditions (3.9)- (3.LL) define the domain of variatron of parameter fl for which the 
stationary mode is unique. 

A similar condition can be found for the temperature of the hept carrier 8'and the temp- 
erature at entry 9" using the estimate of solution (2.1) by means of the upper and lower func- 
tions. Since 

rn==nX'X 

and gz erp (-gz)< e. the sufficiency conditionofuniqueness (3.7) reduces to the following: 

mi:l 0 1; rj3 (i - I (Pe))/el'/: 

It is reduced to the form (usin; the estimate (2.1) 1 

0" + (W - 03 1 (Pe) n (r-I%) > [fi (1 - I (Pe~~~e~/~ (3.12) 

I, i,Aq = 
i 

I” i(K), O”+eR’ 
1, 0” < Is 

and in the limit cases has the simple form 

4. The asymptotic expansion of solution for small P&let number. The SO~U- 

tion of problem (1.21, (1.4) can be obtained by the method of small, parameter when Pei; 1, 

whrch corresponds to the case when heat propagates along the radius considerably more rapidly 

than is carried away by the stream along the reactor. 
We seek the temperature distribution m the reactor, in the form 

e=e,+ Pi& + Pe%, + . . . (4.1) 



Substituting expansion (4.1) into Eq. (1.2) and boundary conditions (1.41, we obtain a 
sequence of linear problems for the determination of functions ej (i = 0, 1, 2, *..) 

Ll3, = 0; r = 0, &l&r = 0; r = 1, dO,ldr = 0 
(4.2) 

LB1 = F (e,); r = 0, dB,ldr = 0; r = 1, d8,idr+v(8,-fY)=O 

LB, = F* (8,) 0,; r = 0, dl&idr = 0; r = 1, dO,/dr + ~8, = 0 

L=-i d 
r ;i;(r&)* 

V=+ P*(eO)=l-*x ,,,,(-gexp(-~jj~xp(-_~ 

The system of Eqs.(4.2) has the property that constants of the preceding approximation 
are determined in the process of determining the following approximation. 

The solution has the form 
0, = 8' - F (8,)/2v (4.3) 

01 = F (6,) (q1.3 - a,) 

0, = F* (0,) I: (0,) (a/ - ugrz - a,), . . . 
1 F*+4v 1 

al=T, a= 8(f*+.&) t a3== 

Values of B,, are determined by the algebraic equation (4.31 that represent the equality 
of heat release and heat transfer in the model of complete intermixing and coincide with the 
stationary values of temperature obtained in /l/. Coefficients of expansion a,,a,,a, gave a 
singularity when 

F+ @lJ +2v=o 
(4.4) 

The last equation implies the equality of slope of curves of heat release and heat removalin 
a model of complete intermixing with respect to temperature. Consequently, the obtained ex- 
pansion is valid throughout the parameter domain, except the neighborhood of curve defined by 
the system of equations (4.3) and (4.4). That curve is at the same time the boundary separat- 
ing the domain of parameters of the total intermixing model with various numbers of stationary 
modes, i.e. represents a branching line. 

Solution of the system of equations form the first of Eqs.(4.3) and (4.4) can be repre- 
sented in parametric form by the introduction of parameter 

We have 

y=l-f3(1 + 2v) + 8” + 2Yi3’ 

,Br 1 -yin y Iln g - ln(-ln y)l* 
- y In y Iln g - In (-ln y)l f y - 1 

(fi* = (1 + 24 p, 0* = 8" f he', y f (o,i)) 

(4.5) 

Similar curves can be constructed also for reactions of any order n, when e* = e* (j3*, 
g, 4. 

From the parametric representation (4.5) of branching lines follows that the number of 
stationary modesofthe reactor model oftotalintermixingwithrespectto temperaturedepends on 
the three parameters fi*, e* and g. A set of curves (4.5) is shown in Fig.1 for several values 
of g. Three stationary modes exist for parameters f3*and Pfrom the region bounded by the 
curve (4.5), two solutions on the curve itself, for other values of parameters the stationary 
solution is unique. The dash line in Fig.1 corresponds to sufficient estimates of uniqueness 
of solution (3.10) for p* and (3.13) for t)*. 
increase along the branching curve. 

The arrows denote the direction of parameter y 

Analysis of the asymptotic expansion (4.3) shows that the constructed regions of unique- 
ness are applicable also for the determination of the number of stationary modes when Pe#O, 
Pe< 1,when parameters Wand @*are at some distance from the branching curve. Consequently, 
for a reactor model of total longitudinal intermixing there are no new boundaries of nonunique- 
ness of solution, and only the branching line is deformed, if only Peel. The degree of such 
deformation is insignificant , since in the first approximation, 
line is independent of Pe. 

the equation of the branching 

In Fig.2 are shown the critical parameters of ignition and extinction (the branching lines 
of solution) when Pe = 0.1 and lng = 25 that were obtained as the result of numerical comput- 
ations using the finite difference approximation of Eqs.tl.2) and (1.4) and the method of 
ranging. Lines 1, 2 and 3 correspond to values of Bi = 0;0.02;0.04. 
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Fig.1 Fig.2 

Fig.3 

5. Approximate solution with moderate P&let numbers. Solving the problem (1.2) 
(1.4) for finite values of the P&let number by analytical means proved abortive. 

The result of numerical computations are given in Fig.3 for parameters 0'= i;g=expZS. For 
parameters B= 25;Pe=10;v=l and various 0" (case a I the solution proved to be unique. In 
case b when fi=ioO, Pe=l; v=O.1, there are three solutions. They are well approximated by 
the analytical estimate (2.1) shown by the dash line. 

These data show that stationary temperature distribution in the reactor 1s well defined 
by a parabola whose steepness increases with increase of numbers Pe and BI. 

Let us construct the approximate solution of the problem. Let the temperature distribu- 
tion along the radius be of the form 

6(r)= B -.4ArZ (5.1) 

Substituting this distribution into Eqs.(l.2) and (1.4) we reduce their solution, using 
Green's function (3.2), to the integral equation 

b13’+Pc{--jG( r, t; Bi)[cp(B)+B]tdt f y(& + -& - f)} 
0 

Introducing the mean temperature (8) over the radius in conformity with the relation 

an averaging Eq.(5.1) over the radius, we obtain 

(5.2) 

(5.3) 

(5.4) 

the assumption The integrals appearing in the right-hand side of (5.4) are calculated on 
that the temperature distribution over the radius are approximated by Eq.(5.1), whose coef- 
ficients A and Bare determined by the boundary condition (1.4) in r = 1 and from Eq.(5.3) 

A= 2Bi((l%-8') 
01+4 

, R=2(5i+2)tB)-BiW 
Bif4 

(5.5) 

Note that the boundary condition (1.4) in r = 0 is satisfied for the distribution (5.1) 

and for any coefficients A and B. 
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Substituting distribution (5.1) with coefficients (5.5) in the right-hand side of formula 
(5.4)) we obtain for the determination of the mean temperature in the reactor the equation 

I 1 
e*=fl*e** - 1 $- 

s 
@(A% + B* - .4*)& + Bi + 

1 s 
'p*(A*t + B* - A)tdt- (5.6) 

" 0 

where 

cp*(z)=exp(-exp(Ing- 1/z)), g** =(0)/p 

/I*= [i +2v+ E;;;;+i;)]fI 

e+-13(l+~)+[2V+ Bi? ]e 
12 (BI + 4) 

p=pp, ~*=2Bi(~T;4w) , he=2(Bi+2B)T;Bi8*’ 

The variable p*and B*are determined in such a way that for Bi = 0 they coincide withthe 
previously introduced parameters in (4.5). 

Since the numerical computations show that different solutions of problem (l-2), (1.4) 
correspond the unequal mean temperatures, we can assume that the number of stationary modes of 
operation of the reactor taking into account the radial temperature gradient, is determined by 
the number of solutions of Eq.(5.6) 

For the determination of the curve which separates regions of the parameters domain witi 
different solutions, we differentiate Eq.(5.6) with respect to 8**. After some transformations, 
we obtain 

B*=~[S~*(A*t+B*-A*)dt--*(8*)]+ (5.7) 

Bi 1 
1 

--*)--*(B*))+ +,,_e+, IS 
~*tdt-+ 

s I 
cp*at 

0 0 

Equations (5.6) and (5.7) define parametrically the specified curve fi* = fi*(6**, g) and 
e* = e* (e+*, g)on which is possible the change of number of modes. Solution of the input 
problem (1.2), (1.4) depends on six dimensionless quantities: pe, Bi, W, Et”, g and fi. But the 
number of solutions according to (5.6) and (5.7) is determined by only five parameters:Bi, 8*'. 
e*, g, p*. 

When Bi=O, the number of solutions depends only on three parameters IY, p* and g,while 
Eqs.(5.6) and (5.7) assume the form 

fl* = z2 exp (In g - 2) exp (-exp (In g - 2)) (5.8) 
e* = p*z_ i + exp (-exp (In g - z)) 

The branching curve of solution (5.8) represents the same curve as (4.5) but with differ- 
ent parametrization, since for Bi = 0 the obtained solutions coincides with the exact one. 

The integral appearing in Eqs.(5.6) and (5.7) can be expressed in terms of two functions 
F,(z) and F,(z) which depend on only one parameter g 

I 

s 
‘p*(A*:+m- A*)dt+F,(B*)- F,(m-A+)] 

j 
cp”(A*l+B*-A*)tdl=-&(B4)-&(8*-A*)]+ 

q [1’1 P*) - Fl (n* - a*)]; F, (I) = s ‘p* (z) &, Fz (I) = i cp’ (I) c dz 
0 0 

Tabulating functions F,(z) and F,(r) for different values of 8 using numerical integratron 
it is possible to construct on plane g*,e * regions with different numbers of solutions of 
problem (1.2), (1.4). 
0. 

By their form they are similar to regions represented in Fig.1 for Pe = 

The dependence of maximum value of fl* on the branching curve (the abscissa of point of 
bifurcation in Fig.1) on parameter Bi determined by formulas (5.6) and (5.7) is shown in Fig.4. 
The dash line shows the critical values of parameter fl of model, above which the phenomenon of 
igniting and extinguishing becomes impossible. Here In fi = 25. 
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2. 
3. 

4. 

5. 
6. 
7. 

8. 

9. 

The carried out numerical computations of soiution of problem 
(1.21, (1.4) by the method of ranging and the method of local varia- 
tion (for large Pe numbers) for various values of parameters show 
that Eqs.cS.6) and (5.7) adequately define the branching curve of 
solution for moderate P&let numbers (vPe<Z) and can be used for tile 
determination of the number of steady modes of reactor operations XI 
the case of ideal displacement with respect to substance and total 
longitudinal intermixing with respect to energy. 

Fig.4 
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